¢

ADj-A241 161
TR

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Exploiting the Redundancy of a Hand-Arm

Robotic System

Claudio Melchiorri and J. Kenneth Salisbury
Abstract

In this report, a method for exploiting the redundant degrees of
freedom of a hand-arm mechanical system for manipulation tasks is
iliustrated. The basic idea is to try to take advantage of the intrinsic
capabilities of the arm and hand subsystems in terms of amplitude
of motions, different velocity limits and degrees of precision for the
achievement of a particular task. The Jacobian transpose technique, a
well-known algorithm for the solution of the kinematic inverse problem,
is at the core of the proposed method for the control of the hand-
arm system. Different behaviors of the hand and of the arm are then
obtained by means of constraints in Null(J) added to the solution
given by the Jacobian transpose method. The constraints are generated
by non-orthogonal projection matrices, computed on the basis of the
behavior desired from the system, without resorting to extended task
space techniques. Comments about the computation of the constraints,
and how to take advantage of them, are reported in the paper, as well
as a description of the experimental activity currently in progress on a

robotic system (a Puma 560 with the Salisbury Hand) at the Artificial
Intelligence Laboratory, M.I.T.
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1 Introduction

In the last few years, a growing interest has arisen in the field of manipulation and artic-
ulated hands. Major topics in this area have been the design and development of suitable
mechanical devices, see 1,2, 3, 4 for a few examples, and the development of techniques for

the effective use of an articulated hand for grasping and manipulating objects, see 5,6, 7
and many others.

Recently the attention of some researchers in this field has been focused on the redun-
dant hand-arm system, and how to deal with the whole device. The approaches taken so
far have dealt with the satisfaction of some optimality criteria, which consider a stable and
feasible grasp as a major goal. 'R, 9! in '8! the problom of the control of the whoie device is
sepatated into the two sub-problems of first choosing a suitable grasp pose for the hand. and
then defining the arm position and orientation on this basis. In |9 the use of a non-linear
programming technique, including several optimality criteria for the joints and the grasp, is
proposed for the effective planning of the hand-arm trajectory.

Since the hand-arm system can be considered a redundant manipulator, it seems natural,
in order to exploit fully the nature of the device, to investigate the results of research in the
area of control of redundant manipulators in order to seek techniques that can be profitably
used in this context.

The first observation is that the results presented in the field of redundant robots mainly
deal with serial-link open-chain manipulators, i.e., devices constituted as a serial chain of
links/joints. Redundancy is prevalently used for satisfying one or more secondary criteria,
such as obstacle avoidance, singularity avoidance, optimization of task space indices or joint
space criteria, while achieving the main task, for example the tracking of a planned trajectory
for the end-effector.

On the other hand, there are some particularities, characterizing a hand-arm robotic
system, which are relevant for the development of a suitable control strategy.

The first concerns the type of redundancy involved in the device. In [10] an interesting
solution to the redundancy problem is presented: the proposed approach consists of con-
sidering a redundant arm as a multi-arm system in which non-redundant arms are serially
connected together. The task of the end-effector is consequently separated into sub-tasks
assigned to each of the sub-parts on the basis of the individual capabilities. This method.
although original and interesting, cannot be integrally adopted in the present context since
the device under consideration is not a serial robot. As a matter of fact, in our case a ma-
nipulator has a redundant parallel device -the hand- installed as an end-effector. Therefore,
it i1s not possible to consider it as a serial mechanical chain.

A second comment may be made with respect to the “behaviors” which are expected from
this type of mechanism. In fact, usually, both small and large motions are involved, requiring
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different parts of the system to act in different ways. For example, in some circumstances
it may not be desirable to move the arm, while in others the task may not be accomplished
with only the limited motion capabilities of the fingers. On the other hand, the system
cannot be generically considered as a macro/micro manipulator system [11, 12}, because this
“behavior” difference may not be needed, nor required, in other manipulation tasks.

A third characteristic of the system being considered is that, intrinsically, a hand-arm de-
vice has to interact physically with the environment. Therefore, any adopted control scheme
must deal with the problem of force control along with the redundancy resolution.

In this work a method for exploiting the redundancy of a hand-arm mechanical system
which addresses the above mentioned considerations is presented. The proposed technique
uses the intrinsic c=pabil*les of the arm and hand subsystems in terms of amplitude of
motions, velocities, and degrees of precision for the achievement of a particular task. The
technique, which relies on a2 kinematic inversion algorithm for redundant manipulators well-
known in the literature, is based on a task-space description of the task, in terms of motions
and/or forces applied to the object/environment. The algorithm, which is presented in lit-
erature as a closed-loop control scheme, uses as a central element the transpose JT of the
Jacobian matrix J of the manipulator. The basic form of the algorithm is modified here,
adding constraints on the motions of the joints in the null space of J in order to take advax-
tage of the differencies in the capabilities of the arm and the hand.

The paper is organized as follows. Section 2 gives a general b ickground of the most
popular techniques proposed in the literature for controlling a redundant manipulator. In
Section 3 the basic scheme of the adopted kinematic inversion method is illustrated, while in
section 4 the modifications are presented and discussed. Section 5 reports some simulations
with a planar 4 degree-of-freedom redundant manipulator, while section 6 illustrates the
results obtained with the implementation of the algorithm on our system, a Puma 560
carrying a Salisbury Hand. Section 7 concludes with some comments and plans for future
activity.

2 Background

The chosen approach for controlling the hand-arm system has been to consider the hand-arm
as a redundant manipulator, and to apply, with proper modifications, techniques adopted for
redundant robots. As is well-known, one of the major problems in this field is represented
by the solution of the kinematic equations, since it is not possible in general to solve them
in a closed form.

In general, the kinematic problem can be stated as follows. Given the joint space Q,
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with dim(Q) = m, and the task space X, dim(X) = n, with n<m in the redundant case, the
forward kinematics of a manipulator is expressed by a differentiable function:

f:Q- X,

which maps each set of joint angles q in Q into the corresponding position x in X:

x = f(q). (1)

Accordingly, an inverse kinematic function gives a joint-space vector q for each x in the
work-space of the manipulator, i.e.

q=f""(x),

—_
(8]
~—

such that f(q) = x.

Often, only translational displacements are considered in X. and therefore X3, with
X = R", while in the general case poth translational and rotational displacements are taken
into account, and therefore n<6, with X = R*"UR", n=n+n,,ny < 3, n, < 3.

Certainly, the most immediate approach to the solution of the inverse kinematics prob-
lem is to determine a closed-form solution of (2), {13}, but, unfortunately, it is not possible
to compute such a solution for every manipulator [14]. The inversion algorithms which are
proposed in literature mostly fall into one of two major categories: (a) global (or path)
inversion methods, and (b) local inversion methods. A global performance criterion is mini-
mized in the first class of techniques, while locally optimal solutions are sought in the second
one. However, thec local optimization approach is the most widely adopted, since the global
inversion methods are mainly limited to off-line trajectory planning [15, 16].

The local inversion methods are based on the differential relationship

x =J(q)q (3)

derived from (1), where q are the joint velocities, x the task space velocities, and J = é6f/éq
is the Jacobian matrix of f(q). Eq. (3) is then usually solved using a generalized inverse, or
the Moore Penrose inverse [17], J* of the Jacobian matrix J.

One of the proposed method for solving (3) consists of expressing the soiution q as

G =3y 4 rad - 3(q) vigy VH(q) (4)




where the first term on the right hand side of (4) is the minimum-norm least-squares so-
lution of (3) (once an appropriate metric is defined in the @ and X spaces [18, 19}), while
the second term represents a vector in Null(J), the null space of J, which is used fu. sat-
isfying one or more secondary criteria, i.e. to optimize the differentiable objective function
H{q). Examples of such secondary criteria include: avoidance of obstacles, joint limits or
singularities; optimization of task space indexes (such as manipulability ellipsoids, dexterity
measures, ...), or joint space criteria (torque/velocity), and several others. See [20] for a
general overview of the most commonly adopted criteria.

A conceptually different way for redundancy resolution has been proposed in (21! and
more recently reformulated in {22]. In this approach, redundancy is used to accomplish an
additional constraint task along with the original one. With this method, known as task-
space augmentation or extended Jacobian technique, one must specify an additional task,
expressed as a proper function of the joint variables, h(q) = 0. The solution is then com-
puted in terms of the extended Jacobian J = [(6f/8q)T(6h/6q)T .

Another relevant approach has been proposed in [23, 24]: the task-priority-strategy. In
this approach, a low-priority task is fulfilled in the null space of a higher priority task, solving
in this way possible conflicts between different tasks.

The previously reported methods are based on a generalized inverse of the Jacobian
matrix J (or on its pseudoinverse), and give the solution in terms of the joint velocities q.
Therefore, in order to effectively solve the inverse kinematic equation (2), one must integrate
g to obtain the joint positions q. This is usually done directly, in an open-loop fashion, pos-
sibly leading to non-accurate solutions q because of the linearization performed with the
introduction of the Jacobian matrix. Moreover, since the core of this method is a differen-
tial relationship, the resulting solution fails if appropriate initial conditions are not provided.

A solution to these inconveniences has been found in reformulating the problem in terms
of a closed-loop scheme 25, 26]. In [25] two closed-loop schemes are proposed for the solution
of (3), one based on J* and the other on the transpose of the Jacobian matrix, J7. In [26],
the latter scheme is independently proposed, as a general technique for solving, with some
very general limitations, any set of nonlinear equations. This technique has been recently
improved and extended to different cases, see [27]-[34]. Here, the main idea is to reformulate
the inverse kinematic problem in terms of the convergence and stability of an equivalent
closed-loop control system. This leads to the possibility of effectively solving the inverse
kinematic problem for redundant manipulator in a robust and accurate way.

The scheme, referred io here as the Jacobian transpose method, [34], Fig. 1, also has
other interesting properties. A first feature is that it requires only the computation of the
forward bim~me i funcuons {{q),J(q)}, avuiding, in its basic formulation, the generalized




f(q)

Figure 1: The basic scheme of the Jacobian transpose method.

inverse of the Jacobian matrix. This leads to a reliable scheme without numerical problems
and instabilities such as those related to singular configurations of the maripulator. More-
over, the stability of the scheme may be easily demonstrated using a Lyapunov analysis.
In the continucus time domain, it can be proven that the tracking error may be arbitrarily
reduced with an high gain A. In discrete time, a compromise has to be accepted between the
convergence velocity and the stability of the algorithm [29, 34]. An additional interesting
feature is that it is very simple to add constraints on the joint motions for the achievement
of desired “behaviors” of the system. Finally, besides generating joint positions, the scheme
provides also joint velocities q(¢), and, with minor modifications, also joint accelerations
G(t), [261.

Because of the above reported considerations, it was decided, in this first stage of work
with the hand-arm, to adopt an inversion kinematic scheme based on this technique for the
kinematic control of the system.

3 The basic algorithm

The basic scheme of the inverse Jacobian algorithm, as proposed in [29, 33], is shown in
Fig. 1. In the Figure, x4(¢) is a desired trajectory, x(¢) is the actual trajectory of the ma-
nipulator, ¢(t) and q(t) are the joint velocities and positions respectively, J is the Jacobian,
Kg is a stiffness matrix, and A{(> 0) is a gain which affects the convergence velocity of the
algorithm itself.

An interesting interpretation of the scheme, which helps to give a physical insight into
the technique, is the following. It is well-known that the static relationship between the
forces F applied at the end-eftector and the joint torques r is given by

r =JTF.

The cormputation of the joint velocities q in the scheme, see Fig. 1, may therefore be




related to the generation of a restoring force F = AKge(t) due to a positional error of an
ideal manipulator, with null mass and unit viscous damping factor.

In the continuous time domain, the proof of the convergence of the joint positions q(t)

to a set qq(t) such that f(qg) = x4 is quite straightforward. Given the tracking error defined
as

e(t) = xa(t) - x(t), (5)

V(e) = >0, (6)

then

Vie)=eTKTé = eTKL(x, — Jq) (7

/

in which the dependency of the functions from the time t and the joint positions qis omitted.
With the choice

(eTKE)'cd)

0
4=R+ TKTI3TK pe)

137K ge, A > 0,

—~
o0
—

it is easy to see how (7) may be made negative definite. This implies that e(¢) — 0 and
therefore q(t) — qg(t). In [29] it is pointed out how eq. ( 8) may be, for computational
convenience, simplified to

q = ’\JTKEes (9)

allowing the function V to be negative-definite only outside a region of the error space con-
taining the stability point e = 0. With the choice (9), the maximum tracking error is directly
related to x4 and inversely to A, while in steady state, since x4 = 0, the tracking error will
be zero. In this situation, an increase in the gain A results into a reduction of the tracking
error, which may therefore be arbitrarily reduced [28, 31].

A discrete time stability proof of the algorithm is presented in [34]. In this work it is
also observed how this technique can be related to the context of non linear optimization.
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As a matter of fact, the algorithm may be interpreted as the steepest descent method, a
well-known technique in the area of multidimensional optimization problems {35]. One of
the major modifications in the discrete time version of the algorithm is that, in order both
to obtain the maximum convergence rate for the scheme and to avoid instability problems,
the gain A has to be updated at each sampling period T. In fact, given the discrete time
version of the Lyapunov function (6) at t = nT

T T
r enI\Een
‘/n = ———5—
and computing the joint velocities as
Qn = AnglcEen» (10)
the difference V11 — V,, may be made negative with the choice
1 TKLI,. S, JTKze,

Ay = =
T eTKZ%J,S,JTK;J.S,.J1K e,

where S,, is a diagonal matrix whose elements are properly computed to limit the maximum
values of 7, (see Fig. 1), [34].

A final remark on the characteristics of this scheme concerns the possibilitv of getting
“stuck”, 1.e. to generate a null joint velocity vector, @ = 0, also if e # 0. This happens when
Kge € Null(JT). However, this does not represent a serious limitation to the applicability of
the algorithm. As a matter of fact, besides being an easily detectable condition (q = 0; e #
0), it can be argued that the term Kge can be easily modified in such a way that Kge ¢
Null(JT). This is performed by adding suitable constraints on the joint space {as done in
134]), or in the task space. Obviously, in this latter case if the trajectory has some components
which are constantly in Null(JT), the algorithm will not be able to compensate for errors in
them.

4 The adopted algorithm

In order to apply the inversion technique outlined in the previous section, some modifications
are necessary to address the particularities of the hand-arm system we are considering. The
first problem is that the method, in its basic form, does not make any distinction among the
various joints of the arm and of the hand. This is not acceptable, since, as mentioned in the
Introduction, there are tasks in which a different action is desired from the two subsystems.




For example, in order to quickly approach an object, one could take advantage of the fast
movements of one part of the system, say the hand, while a slower motion is executed by
the arm, restoring at the end of its motion the hand to an approp.iate position for an opti-
mal grasp of the object. In other circumstances, the motion of the hand is not needed, nor
desired: if an ol ject is stably grasped, it could be desirable for the arm alone to generate
the motion of the hand/object in the environment. Therefore, in different circumstances. a
“difference” in the “behaviors” of the two sub-systems is required. As a consequence, the
algorithm has to be modified in order to be able to adapt the joint position/velocity values
of the two sub-systems to the different requirements of the task being performed. Another
capability, which may be of interest, is the possibility of maintaiuing some joints (for example
the joints of the hand) both far from critical positions (singularities, joint limits) and close
to desired ones (suitable for optimal grasp).

In the following, let us indicate with the subscript “S” the quantities of the whole system,
for example the Jacobian Js, the joint velocities qs, etc., while “P”, “H” and “F” denote
the arm (Puma), the hand, and a finger respectively. For the system, eq. (3) becomes now

Bxs = BIsqs = [BJP BJH] [g;‘;}, (12)

where the superscript “B” indicates that the quantities are expressed in the base frame B,
Fig. 2.

The modifications which it may be necessary to introduce into the solution given by the
basic algorithm, shown in Fig. 1, must not interfere with the main task of the manipulator.
This is accomplished if the modifications operate in the null space of the Jacobian Jg, with
the additional advantage that the stability proofs of the algorithm, given in the previous
section, still apply. Hence, the final set of joint velocities §s may be thought to be composed
of two terms:

ds =qa -4y = A BITKge + qn

where qv € Null(Js), and g4 is the solution computed by the basic Jacobian transpose

T
algorithm. Obviously, since gy = [ 9in 94w ] € Null(Jg), the following relationship
must hold:

0= BJpapn + BIuqun.

In the following subsections, the determination of the term qu is discussed, considering
for simplicity only one finger of the hand and only linear displacements for the end effector.
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Figure 2: The Puma - Salisbury Hand system.

Three basic cases are considered, namely the execution of a task involving: (a) oniy the
motion of the finger joints; (b) only the motion of the arm; {<} the motio.. of the whole
system including, during the last part of the trajectory, the a.aievement of the desired
position of the fnger.

4.1 Generating motion only with the finger.

In this case it is required that the joints of the arm be maintained at a constant value (gpinit),
i.e. that qps = 0, and that the finger joints set-points be computed in such a way to follow
a desired task space trajectory xy. The final solution of (12) is then in the form

. Taes] ] 0
qs_[QFs]_IQFs] (13)
with

Xq(t) = f([ Qhinie drs(t) ]T) (14)

The joint velocities qy may then be computed from

drs = qra+dpn =0
0 = BIpapn + BIrarn



which gives

dpy = —Qqpy
arN BI:B3pqp.

or, In matrix form,

L —qpa _ -1, 6. . (123
qyN: = l_ BJ;BJPQPA] - [BJ;BJP O]QA = PFqA- (15)

where I, is the n,xn, identity matrix. The matrix Fp in (15) generates, given a solution
14, a joint velocity term qv in Null(Js) which, added to qu, verifies the two conditions
expressed by (13) and (14). The - :atrix Pr may therefore be considered as a projector.
clearly not orthogonal, of the given solution q4 in the null space of Js.

4.2 Generating motion only with the arm.

[t is now required that the joints of the arm be in chaige of moving the manipulator along a
specified trajectory, while Gr; = 0, i.e. qr(t) = qpinie. The solution of (12) is, in this case,
in the form

with

"

xi(t) = £([ abs(t) qFunic |7)- (17)

The joint velocities qx are now computed from

0 = BIpdpn + BIrgrn
aArs = qra+qry =0

which gives

arv = 25 BIrara
qrN = —qFa
10




and, in matrix form,

By1- 8B : 1 By~ B
. [ JP JFqPA 0 JP Jp X . .
o= ! . = =P . (1R
qn2 l. —dra J 0 1, qa Pqa )

where L, is the nyxny 1dentity matrix. The matrix Pp in (18) generates, given a solution q 4,
a joint velocity termn gy in Nuli{J) which, added to ¢4, verifies the two conditions express d
by (16) and (17). The matrix Pp, similarly to Pg, may be considered a projector of the
given solution ¢4 in the nall space of Js.

4.3 Moving the finger to a desired position.

The actions to he detemined now are intended to achier the 1oint position vector qf to a
desired valuz qgy, whit. the whole system is follewing 2 specified trajectory xy. A pracucal
way for the achievement of this goal is to generate 2 joint velocity term which compensates
for the positioral errors (qpy — qF). In otrer words, the term qy may now be computed
from

0 = "Jpapy ~2Irdry
qry = K(qry — qr)
from which
gey = —BIBIrK(qrs — qrF)
qry = K(qrs — qr)
or, in matri.. form,
. 0 B5J;B] i )
4ys = — [ 0 fI, " | K(ara - ar) = ~PpK(qrs - ar) (19)

in which the projector Pp is the same as in (18).

The three terms qy, in eq. (15), (18), (19), may be combined tog~ther, resuiting in tae
scieme shown in Fig. 3. In the scheme, the three factors a;, a;, and a3 (0 < a; < 1,
1=1.2.3), are variable gains which are used to medulate the actions of the three terms ¢y,
g2, and qy; ou the original solution q4. By properly changing in real time the three factors
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K Pp +— a3
T +
.+_
Pp +— a3
+
P ay N
zi(t) e(t) F ] R q(t)
— Kg JT A : s J
dalt) 4(t)

f(q)

Figure 3: The modified Jacobian transpose scheme.

a;, it is possible to modulate the possible “behaviors” of the system. If o; = 0, the relative
constraint term u; is neglected, while when «; = 1, the constraint is fully active.

A final remark may be made with respect to the projectors Pr and Pp. As a matter
of fact in these matrices a term of the type J} Jp is present (the sub-matrix BJ% 8J; in
Pr or the sub-matrix BJ58Jp in Pp). In the two cases, this implies that the original
trajectory is tracked without errors iff Jpqp € Range(J4). If Range(J4) = Range(Jpg), the
introduction of the projectors does not change the trajectory of the system, otherwise, only
the component in Range(J,) may be compensated for with this solution. If only one finger
1s considered, this problem may become relevant only with the use of the matrix P, since
(with the exceptions of the singularities) the range space of the arm is the whole RS,

4.4 Computation of the gains «;.

An interesting problem is how to define suitable strategies for the computation in real-time
of the scalars a;. The solution s is now expressed as

qs = qa + a1 qn1 + aqn; + azdna.

It is not meaningful to nave a; = a; = a3 = 1, since this would imply the simultaneous
activation of opposing constrains on the solution, while the choice a; = a; = az = 0 means
that the original solution g, is adopted. In particular, the choice a; = a; = 1 implies
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that the two contradictory constraints of keeping both the arm and the hand blocked while
following a trajectory are imposed. As a matter of fact, this choice results in a ’switching’
of the motions produced in the end-effector by the the two subsystems, and the final effect
is simply to have a different set of joint veiocities qs.

As previously mentioned, it may be convenient to take advantage, at least during the
first period of motion, of the fastest part of the system. It seems therefore reasonable to
have, at the beginning of a task, the gains set as

01:1,02:(13:0.

These values have to be changed when, for example, the finger’s joints are close to a limit,
or when the tracking error [je!| is greater than a maximum allowed value !le]],,,.. A way to
take these constraints into consideration is to compute the gains as

- 1  —qri < g <gri,i=1,...,ny; and el < |lelnas 2
a = { e~H39-v22  stherwise: .
a, = (1—ay)p (21)
Qz = (1 - a1)7 (22)

where ny is the number of joints of the finger, g7, a threshold value which limits the motion
of the i-th joint , and ¢r; the actual joint limit, Aq = ma:c Ae = |le|| — llemazll, 1, v
two positive scalars which are set to 1 if the relative limit 1s broi(en In this way the finger
takes care of the required motion, provided that all the joints, as well as the tracking error,
are within proper thresholds. If one of these two conditions fails, with the choices (20)-(22)
the arm starts moving, while the finger achieves the desired configuration.

tf other “behaviors” of the system are desired, different combinations of the three gains
are possible. For example, if an object has been grasped, and there is no need of modifying
the grasp pose, a; is set to 1, and all the movements of the system are generated by the arm.

4.5 The force feedback loop.

The final aspect of the problem we deal with is the need to consider, in the generation of the
joint trajectories, the forces that are applied to the environment. To this purpose, a further
feedback loop is added to the scheme, leading to the diagram shown in Fig. 4. In this
scheme, F4 is a desired force, er = (Fy — F) is the force error, and K¢ a compliance matrix
which represents a model of the manipulator-environment interaction. The stability of this
loop is now affected by the manipulator dynamics and its control system. Considering an
ideal system, i.e. assuming the forward kinematics f(q) as model of the manipulator,/control
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Py(e - Coord. tramsf.
+
q4(¢)
K Pp '—1 as

+

Pp |— a3

Pp —4 = q(t)

v4(t) et

; f Robot L

dalt)

z(t)

q)

Figure 4: The force feedback loop in the Jacobian transpose scheme.

system, and a stiffness matrix Kr for modeling the interaction with the environment, the
stability proof follows the same line as before. This model will be used in the following
discussions.

4.6 Extension to the whole hand.

When the whole hand is taken into consideration, it is necessary to consider an extended
task space. In fact, we are interested now not only in the specification of the object posi-
tion/orientation, but also, once the object is grasped, in the relative displacements of the
fingers, i.e. in the distances between the fingertips. Considering three fingers, the new
forward kinematic function is therefore

x(q) = [3((2))] € R? (23)

where f(q) € R® are the forward kinematic equations relating the hand-arm joints values
to the position/orientation of the object, and d(q) € R? are the relative displacements of
the fingertips. It is easy to see how only the joints of the hand affect this latter vector.
Assuming a grasp on a rigid object, and without slip at the contact points, the computation
of these two functions is quite straightforward. In particular, the function d(q) results as
the magnitude of the difference of the positional vectors of the three fingertips, and, how
already pointed out, is a function only of the hand joints. We are now interested in defining
a differential relationship between the set of joint velocities and the set of object velocities
and “internal velocities”, i.e. the relative velocities of the fingertips.
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In {1] the notion of grasp matrix G has been introduced. This matrix is a 9x9 matrix
which relates the forces and displacements of the object to the forces and displacements of
the single fingers, i.e.

F=GTFr

or, in the velocity domain,

x; = G7lx, (24)

where: T
F = [ FT rl ¥T ] represents the forces applied at the fingertips

T
F = [ fT tT fi, fas fu ] are the 6 external and 3 internal forces acting on the object

. T . e .
X5 = [ x5, xE, xT, ] are the three linear velocities of the fingertips

T

. X . T . .
X, = [ vI Wl dy; dys dn ] are the 6 velocities of the object and the relative velocities

of the three contact points, expressed as function of the hand joints only.

Eq. (24) may be written as

H3,¢ 73, 0 0 q: u
Bxp=| B34, | = o #J, o q | = FIyqn = G x,
HI3qs o o 7, q3
then
He _Hy - _ Hy o | #Ius]. o
Xo =G Ipqn = "JuQu = | gy " |4 (25)

in which all the quantities are expressed in the hand frame H, see Fig. 2, and the two
T

terms #Jp, = [ HyT ~HJT ] and #J y, refer respectively to the object velocity and to

the “internal velocity”, i.e. the deformations of the grasp triangle, the imaginary triangle

between the three contact points. Equation (25) may be expressed in the base frame as

BRH BRHPO@ 0
Bx. = 0 BRy 0 By au (26)
0 0 BRy

in which PRy is the 3x3 rotational matrix expressing the rotation between the frames H
and B, and Pog is a skew symmetric matrix equivalent to the cross product (x®p;), where
the vector Zp,,; gives the object position in the base frame.
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As far as the arm is concerned, a relation similar to (26) may be defined. The derivatives
of the functions f(q) and d(q) with respect to the arm joints yield the Jacobian for the arm:

By _ [ 6f/6qp ] _ [BJPf ]
P = éd/éqp | 0

where the matrix 2Jp; computes as follows

(BIp, — Px BJp,)
Jps = By
Puw
T
where BJp, = [ ByT, BJL, is the arm Jacobian, in which the terms generating the
linear and rotational velocities are in evidence. The matrix Py is a skew symmetric matrix
equivalent to the cross product (xZp,), defined on the basis of the elements of the vector
Bp,, giving the object position with respect to the hand frame, expressed in the base frame.

Therefore, the final Jacobian Js of the hand-arm system, in our case a 9x15 matrix, is

By By

B B B Py Hf

S [ P H ] [ 0 BJHd ]

and the differential relationship between the set of object velocities and internal velocities
and the set of joint velocities is

e am [ ] . o
o [% 3] (2] 200

0 Jug qn

where the superscript B is omitted for brevity.

The Jacobian transpose method may still be applied, with the additional need of speci-
fying the internal displacements d. This implies that the solution q4 given by the algorithm
is

qp = \JiKge;
an = MIGKeses + 35, Kpaeq)

from which it is clear how the joints of the Puma may compensate only for errors in the
position/orientation of the objects, while the joints of the fingers also affects the internal
velocities. In this case, without the introduction of the projectors, if d(¢) is maintained at
a constant value and a movement of the object is required, both qp and qg are changed in
order to follow the trajectory, with the additional requirement for the hand to maintain a
constant grasp triangle.

In the following, the three cases of movements of the hand, of the arm, or changes in the
relative displacements of the fingertips are considered.

w °




4.6.1 Case 1: motion of an object grasped in the hand with only the joints of
the fingers.

If a modification of the grasp triangle is not required at the task level, i.e. d=cost., the

T
specified trajectory originates a velocity vector of the form x, = [ x}" o7 ] , therefore
x .
[ Of ] = Jsqs.

If it is desired to move the grasped object by using only the hand, it follows that

qrs = qra +4qpN =0
Jsqn =0

therefore

~Jpsqpa +Igsqan =0
Juiquan =0

from which
qan = I Ipsdpa
or

. —qpa -I, 0]. .

= . = = P ’
qw~ [ J-I{-{f JijPA ] [ J;{f pr 0 ] q4 HA4
which is equivalent to eq. (15) obtained in case of a single finger.

4.6.2 Case 2: motion of an object grasped in the hand with only the joints of
the arm.

At the task level, we assume now that the same trajectory of the previous case is specified.
[t is now required that

X ¢ _ )
[ 0 ]—-JSQS
with
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qy = qQua +Qun =0
Jsqn =0

therefore

Jpsdpy — JusQua =0
—Ju49ma = 0.

Hence, one computes

ey = J3IHGHA
or

BIL B pana ] _ [0 Byt Big

— 14 = Ppda,
a~ [ —Qra 0 -1, ]CIA P44

equivalent to eq. (18) obtained previously.

4.6.3 Case 3: deformation of the grasp triangle.

Let us consider now the internal motions only, which might be required to adjust the grasping
forces. The desired trajectory in the task space implies that the task velocity vector is in

the form:
0 )
[ d ] = Jsqs

0=Jpsqp +Iusqn
d = Jnaqn.
It 1s clear that it is not possible to achieve this result while keeping the joints of the hand

blocked (qg = 0 = d = 0). In fact, the application of the projector Pp to the solution qu
computed in this case by the algorithm, gives as result

dpa +I5Inana

ds = qu+ Ppay = :
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Figure 5: The simulated 4 degree-of-freedom redundant manipulator.

or, in terms of the final task space velocity,

Tede = Ip; I | [ apa+3bIuqua | _ [ Ipsapa +IpsIpIudna
sqs = =
0 Jna| 0 0

and therefore no internal motions are accomplished. Only the motion of the object which

should be generated by qu are compensated for: nothing can be done for d. In this case,
only the projector Py could be applied without errors in the task space.

5 Simulation

In order to test the effectiveness of the proposed kinematic inversion technique, a simulation
has been carried out with a planar redundant manipulator. The simulated robot is shown
in Fig. 5. It has 4 degrees of freedom and it is basically constructed as two two-link
manipulators emulating a planar two degrees of freedom arm carrying a two degrees of
freedom finger. In Figs. 6-8 some results are reported.

In particular, in Figs. 6, 7 a trajectory of the end effector in the task space and the
corresponding trajectories in the joint space, obtained from the algorithm of Fig. 1, are
shown.
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Figure 8: The joint-sp—a.ce trajectories' with the modified techniqﬁe.

Then, the same task has been performed using the algorithm described in the previous
section. In Fig. 8 the obtained joint trajectories are shown. It may be noticed how only the
joints 3, 4 are activated at the beginning of the task, while joints 1 and 2 start moving only
when one of the condition in (20) fails. After that, joints 3 and 4 are restored to the original
position, while only the first two joint actually move the end-effector along the cartesian
trajectory. The tracking errors obtained with the original and the modified scheme are of
the same order of magnitude (< 2 mm).

Figs. 9, 10, show a task in which the manipulator is required to apply a force. There
are no motion specifications at the task level: only the requirement to exert a force along
the negative x direction; a rigid surface is positioned at x = 1.05. Fig. 9 reports the joint
position values. Again, joints 3 and 4 start the motion, and when one of them reaches the
joint limit, the arm begins to move until contact with the surface is detected. Finally, during
the force application phase, joints 3 and 4 are restored to the desired initial position. In Fig.
10 the desired and applied forces are shown.

6 Implementation

A first set of experiments of the above described technique has been carried out on an ex-
perimental set-up at the Artificial Intelligence Laboratory, M.I.T. The manipulator consists
of a Puma 560 with the Salisbury Hand installed. The system has 15 degrees of freedom:
6 in the arm and 9 in the three fingers. Force information is available from force-sensors
installed in the fingertips and from a sensorized palm. The control is performed by a two
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.Figure 9: The joint trajecto'ries for a force-task.
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Figure 11: The trajectories of joints 1-3 of the Puma.

level control systemi: a VMEbus with three MC68030 processors running the VxWorks real
time operating system is used as a supervisor for the servo level, based on three Unimation
controllers, one tor the Puma and two for the Hand. Two of the MC68030's are used to
manage the communication with the controllers of the Puma and the Hand, as well as to
acquire and process the force information from the fingertips. The third processor is used
for the solution of the kinematic equations.

At the current stage of implementation, only one finger of the hand is taken into consid-
eration in the kinematic inversion algorithm.

In Figs. 11-13, some results obtained from the experimental equivalent tasks of Figs. 6-10
are presented. Specifically, Figs. 11-12 show the Puma joint trajectories, and Fig. 13 the
finger joint positions for a straight-line motion of the end effector. The modified aigorithin
is used in this case, leading to results similar iv ihose presented in Fig. 8: the Puma’s joints
are blocked during the first period of motion, while in the last part the finger is restored to
the initial position and the task is accomplished by the Puma.
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7 Conclusions and future work

[u this report, work aimed at the development of a kinematic inversion algorithm for an hand-
arm system has been described. The chosen approach for the determination of such algorithm
has been to consider the device as a redundant manipulator, and to apply, with proper
modifications, one of the most proinising techniques in the field: the Jacobian transpose
rmethod. The modifications introduced in the scheme consider the different capabilities
of the device in terms of maxinium joint speed and/or amiplitude of motion, as well as the
possibility of execuling the specified task with only a subset of the available joiuts. Moreover,
4 force feedback loop has been introduced, since the application of force ou the environment
is a major goal in the tasks for the system we consider.

At the present, only a partial implementation of the described algorithm, considering the
arm and one finger, has been realized on an experimental set-up available at the Artificial
{ntelligence Laboratory, M.ILT., a Puma 580 with the Salisbury Hand.

The first comment on the currently realized algorithm concerns the rules adopted for
the computation in real time of the gains a; in (20)-(22). In {act, these rules take into
consideracion only static or first-order kinematic constraints, such as the joint-limits or the
tracking errors. It could be of interest to take into consideration different and more general
rules, based also on the effective dynamic capabilities o1 the individual joints.

Another interesting variation thai could be introduced is to concoptually consider the
wrist as a part of the hand rather than as a part of the arm. In this case, the “arm” would
have oniy the responsibility to position the “hand” in the work-space, while all the remaining
actions would be executed by the “hand”. This should result in a more “anthropomorphic”
behavior of the whole device, requiring no motion of the arm in manipulation tasks in which
only small motions are required.

Finally, it is in the authors’ opinion that the performances of the algorithm could be
improved by considering the gain A of the loop not siwnply as a scalar, but as a full n,¥n,
matrix. As a matter of fact, when the forward kinematics function is not dimensionally
homogeneous, some limitations of the perforraances, in terms of convergence of the algorithm.
tu ihe solution, are noticed.

These modifications of the basic algorithm, along with the full implementation of the
propuseu technique on the hand-arm system, are among th~ main goals of the current activ-
1ty
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